A Multi-Mission 8 GeV Superconducting Injector Linac

G. William Foster

Fermilab Long-Range Planning / Proton Driver Presentations Oct 09, 2003

8 GeV Superconducting Linac Possible Sitings for MI Injection

8 GeV Superconducting Linac

- New idea incorporating concepts from both SNS and TESLA.
 - Copy SNS Linac design up to 1.3 GeV
 - Use "TESLA" Cryomodules from 1.3 8 GeV
 - H⁻ Injection at 8 GeV in Main Injector

==> "Super-Beams" in Fermilab Main Injector:

- 2 MW Beam power at BOTH 8 GeV and 120 GeV
- Small emittances ==> Small losses in Main Injector
- Minimum (1.5 sec) cycle time
- MI Beam Power Independent of Beam Energy==> (flexible neutrino program)

120 GeV Main Injector Cycle with 8 GeV Synchrotron

120 GeV Main Injector Cycle with 8 GeV Linac, e- and P

8 GeV Linac Allows Reduced MI Beam Energy without Compromising Beam Power

MI cycles to 40 GeV at 2Hz, retains 2 MW MI beam power

Running at Reduced Proton Energy Produces a Cleaner Neutrino Spectrum

Running at 40 GeV reduces tail at higher neutrino energies.

Same number of events for same beam power.

(Plot courtesy Fritz & Debbie)

P/PD Oct. 9, 2003

Page 7

Injector Linac Parameters

- Beam Energy = 8 GeV
 - Same as existing Booster
 - Anywhere from 5~15 GeV would be OK
- Beam Pulse: 25mA x 1msec
 - Same as SNS (==> Beam Physics Studied)
 - Fills Main Injector at 5x Design Intensity (2 MW)
- Rep Rate: 10 Hz (MI uses only 0.6 Hz)
 - Same as TESLA (==> Multi-Beam Klystrons)
 - 2 MW stand-alone beam power for other uses

Superconducting LinacParameters

Project Info: tdserver1.fnal.gov/project/8gevlinac

8 GeV LINAC			
Energy	GeV	8	
Particle Type	H- Ions, Protons, or Electrons		
Rep. Rate	Hz	10	
Active Length	m	671	
Beam Current	mA	25	
Pulse Length	msec	1	
Beam Intensity	P / pulse	1.5E+14	(can be H-, P, or e-)
	P/hour	5.4E+18	
Linac Beam Power	MW avg.	2	
	MW peak	200	
MAIN INJECTOR WITH 8 G	SeV LINAC		
MI Beam Energy	GeV	120	
MI Beam Power	MW	2.0	
MI Cycle Time	sec	1.5	filling time = 1msec
MI Protons/cycle		1.5E+14	5x design
MI Protons/hr	P / hr	3.6E+17	
H-minus Injection	turns	90	SNS = 1060 turns
MI Beam Current	mA	2250	

8 GeV S.C. Linac Can Accelerate electrons, positrons, H- and protons

- The linac pulses at 10 Hz, but the MI only uses 0.6 Hz.
- The last 7 GeV of the linac can accelerate e+- or P
 - Requires fast ferrite phase shifters (complete SNS R&D)
- Other possible missions for unused linac cycles:
 - 8 GeV electrons can drive XFEL
 - 8 GeV neutrinos, Spallation Neutron or Muon sources, etc.
 - 8 GeV Linac could eventually become e+ pre-accelerator for TESLA @FNAL

8 GeV Superconducting LinacWith X-Ray FEL and 8 GeV Spallation & Neutrino Source

Multi-Mission 8 GeV Injector Linac

Benefits of 8 GeV Injector Linac

- Benefits to neutrino and Fixed-Target program
 - solves proton economics problem: > 5E18 Protons/hr at 8 GeV
 - operate MI with small emittances, high currents, and low losses
- Benefits to Linear Collider R&D
 - 1.5% scale demonstration of TESLA economics
 - Evades the Linear Collider R & D funding cap
 - Simplifies the Linear Collider technology choice
 - Establishes stronger US position in LC technology
- Benefits to Muon Collider / Neutrino Factory R&D
 - Establishes cost basis for P-driver and muon acceleration
- Benefits to VLHC: small emittances, high Luminosity
 - ~4x lower beam current reduces stored energy in beam
 - Stage 1: reduces instabilities, allows small beam pipes & magnets
 - Stage 2: injection at final synchrotron-damped emittances

8 GeV Superconducting Linac Conceptual Layout

Proton Source Linac Front End

 Original FNAL Cockroft-Walton

Hitachi / AccSys Source/RFQ/DTL

 AccSys PL-7 RFQ with one DTL tank

 Appears to have shorter length and lower price than cloning the SNS Linac, <u>for 10 Hz operation</u>

8 GeV Superconducting Linac TECHNICAL SUBSYSTEM DESIGNS EXIST AND WORK

SNS Cavites

FNAL/TTF Modulators

"TTF Style" Cryomodules

RF Distribution Civil Const. Based on FMI

8 GeV Linac Cryomodules - 4 Types

9 Cell Beta=1 Cavities, 1207.5 MHz

Superconducting Cavity Gradients

8 GeV design assumes *peak* field in cavities of 45 MV/m.

SNS:
37.5 MV/m
TESLA(500):
47 MV/m
TESLA(800):
~70 MV/m

New results: Beta=0.47 Cavity Tests MSU/JLAB/INFN for RIA

RIA 805 MHz 6-cell β =0.47 (RIA6-1Sept. 2002)

Beta=0.47 cavites now exist and exceed specs

SNS Cavity Costs

 We have graciously been given access to SNS actual costs for ~110 completed SCRF RF cavities, tanks, tuners, couplers, etc. including final chemistry and assembly labor.

(Thanks to N. Holtkamp, E. Daly, Katherine Wilson)

- The 8 GeV Linac needs 416 cavity assemblies
 ==> \$35M for 8 GeV Linac
- This assumes:
 - no quantity discount or rebate for existing tooling
 - that 1.2 GHz 9-cell cavities are the same price as 805 MHz 6-cell SNS cavities of same length

8 GeV Cryomodule Costs

- Costs for SNS cavity assemblies and RF power couplers integrated into TESLA-style cryomodules were estimated by T. Nicol (TD)
 - Tom is the project manager for US LHC cryostats
 - USLHC requires ~270m of cryostats, 8 GeV~650m
- Final Cost including cavities, cryostats, RF couplers, EDIA & labor, no contingency:
 - 52 Cryomodules @ \$1093k ea. = \$57M
 - ... this is the biggest single cost component

TESLA-Style Cryomodules for 8 GeV

(T. Nicol)

- Design conceptually similar to TESLA
- No warm-cold beam pipe transitions
- No need for large cold gas return pipe
- Cryostat diameter~ same as LHC
- RF Couplers are KEK/SNS design, conductively cooled for 10 Hz. (R. Rabehl)

RF - Klystrons

- 402.5 MHz / 2.5 MW (7 total)
 805 MHz / 5.0 MW (10 total)
- 1207.5 MHz / 10 MW (36 total)

Scaled by $\sim 7\%$ from 1.3GHz

Modulators for Klystrons

- Biggest single component in RF costs
- Pfeffer, Wolff, & Co. (FNAL BD) have been making TESLA spec modulators for years
- FNAL Bouncer design in service at TTF since 1994

Modulator Circuit

- IGBT / Capacitor Discharge circuit
- Bouncer to maintain flat top
- Redundant Switch with Ignitron Crowbar
- Pulse Transformer 10kV to 130 kV (typ.)

H. Pfeffer, D. Wolff, & sons.

Fast Ferrite Phase Shifter R&D

- Provides fast, flexible drive to individual cavites
 of a proton linac, when one is using a
 TESLA-style RF fanout. (1 klystron feeds 36 cavities)
- Also needed if Linac alternates between e and P.
- This R&D was started by SNS but dropped due to lack of time. They went to one-klystron-per-cavity which cost them a lot of money (~\$20M / GeV).

Making this technology work is key to the financial feasibility of the 8 GeV Linac.

RF Fan-out for 8 GeV Linac

A. Moretti, D. Wildman

RF Fanout at Each Cavity

RF DISTRIBUTION FOR **ONE 805 MHz CRYOMODULE**

No Active Electronics in Tunnel – only Ferrite & Bias Coils.

ELECTRONICALLY ADJUSTABLE E-H TUNER

Ferrite Phase Shifter High-Power Test Stand

A. Moretti, D. Wildman, N. Solyak, Y. Terechkine

- 805 MHz Klystron
- 12 MW x 100usec (need: 0.5 MW x 1 msec)

First goal:

See if existing YIG tuner functions at 500kW. (yes!)

Ultimate Goal:

0.2 dB loss for 360 deg. phase shift in 100~500usec.

TESLA Tunnel & Klystrons

More Design Details

- Longer (technical) version of this Talk
- 30 Page Parameter List (v1.8)
- Cost Estimate Spread Sheet w/ BoE

http://tdserver1.fnal.gov/project/8GeVlinac

Short Paper (Linac 2002) :

http://tdserver1.fnal.gov/project/8GeVlinac/Linac 2002

COST ESTIMATE (online)

\$284 M + 30% Tax = \$369 M

Staging and Cost Optimizations...?

- Build the new copper front end ASAP and get it off the budget. Useful for Synch. or Linac.
- Double the pulse width and cut the number of SCRF Klystrons and modulators by half. (10 Hz ==> 5 Hz?)
- Assume TESLA 800 surface fields will work:
 - Baseline 5 GeV linac by assuming TESLA 500 gradients,
 - Deliver 8 GeV linac by achieving TESLA 800 gradients.

```
384 Cavities ==> 240 cavities ;
                                 Linac Length: 650m ==> 400m
```

Conclusions

 The 8 GeV SCRF Linac technically feasible with existing components & known costs.

Exception: Fast Ferrite phase shifters need demonstration

 The SC Linac Option is somewhat more expensive than the synchrotron but has a number of advantages and possible secondary missions.